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Dip and Anisotropy Effects on Flow
Using a Vertically Skewed Model Grid

by John R. Hoaglund 112 and David Pollard’

Abstract

Darcy flow equations relating vertical and bedding-parallel tlow to vertical and bedding-parallel gradient com-
ponents are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal
hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error
results are presented for ranges of structural dip (0 <8 <90) and gradient directions (0 < ¢ < 360). The equations can
be coded into ground water models (e.g., MODFLOW) that can use a skewed Cartesian coordinate system to simu-
late flow in structural terrain with deformed bedding planes. Models modified with these equations will require input
arrays of strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.

Introduction: Structure, Scaling, and Anisotropy

In regional ground water models of structural terrain,
the principal conductivity directions may not be aligned
with the model axes, and the intralayer distances separating
solution points may not correspond to map distances. As a
result, the directional components of an arbitrary flow
direction, and the intralayer distances upon which these cal-
culations are based, may become functions of the angle of
dip. Modeling these systems, where bedding and/or bed-
ding-plane partings are known to influence ground water
flow (Burton et al. 2002), requires the physical rotation
with dip of the transverse anisotropy in hydraulic conduc-
tivity, and depending on the model grid, may require the
rescaling of intra-aquifer distances along dip. Bedding-par-
allel hydraulic conductivities, K , are determined from the
analyses of in situ aquifer tests and/or lab tests in the plane
of bedding. Intralayer distances between solution points
(nodes) in the model are determined in the horizontal plane,
usually from maps. Typically, the modeler assigns both the
bedding-parallel hydraulic conductivity and the map dis-
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tances to a layer within the model, assuming the principal
conductivity directions in the plane of bedding, and the
locations corresponding to the nodes of the grid, both lie in
the horizontal plane. Bedding-orthogonal hydraulic con-
ductivities, K|, are determined from the analyses of in situ
packer tests and/or lab tests in the plane perpendicular to
bedding. Interlayer distances are commonly determined
from vertical stratigraphic separations between aquiters;
the vertical spacing between nodes may either be fixed or
vary according to the thickness of the aquifer. Typically,
the modeler assigns both the vertical stratigraphic separa-
tions and the bedding-orthogonal hydraulic conductivity to
the vertical direction in the model, assuming the vertical
direction corresponds to the principal conductivity direc-
tion perpendicular to the plane of bedding. However, in
structural terrains at the scale of a ground water or reservoir
model, the principal conductivity directions may not be
aligned with the model axes and thus the directional com-
ponents of an arbitrary flow direction become functions of
the angle of dip, rotating the principal directions with the
regional and/or local fold-controlled bedding. Depending
on the choice of model grid, the intralayer distances also
may become functions of the angle of dip. The typical
approach then fails to characterize the flow properly within
the medium and error is introduced to the model calculated
heads and flows. This paper outlines corrections that can be
made to ground water models to rescale intralayer distances
and characterize the transverse anisotropy related to the
structural dip of bedding.
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Model coordinate systems commonly require solution
of the ground water flow equations in grid directions that are
scaled along dip, and/or are not coincident with the princi-
pal hydraulic conductivity directions. MODFLOW
(McDonald and Harbaugh 1988) allows for two basic
approaches in defining a model grid, the grid overlay
method and the boundary-matching approach (Jones et al.
2002). The grid overlay method results in uniform grids that
do not necessarily match hydrostratigraphic boundaries, but
are orthogonal in the vertical as well as horizontal plane.
Orthogonality in the vertical plane allows for standard rota-
tion transformations for the transverse anisotropy, although
these transformations are not part of standard MODFLOW.
The boundary-matching approach “ensure[s] that cach
upper and lower boundary [of the hydrostatigraphy] is pre-
cisely matched by a layer boundary in the MODFLOW
grid.” (Jones et al. 2002, p. 195). Use of the boundary-
matching approach results in layer-centered nodes that par-
allel the bounding hydrostratigraphy, which usually results
in a curvilinear coordinate system for the model.

Weiss (1985) presents an analysis of the hydraulic
cffects from changes in the aquifer elevation of nodes “that
follow dip and local changes in aguifer thickness” (Weiss
1985, p. 254). Using a nonorthogonal, curvilinear coordi-
nate system, he modeled a synclinal fold involving three
isotropic aquifers and concluded that “elevation changes
cause only small changes in flow pattern and head distrib-
ution from those of similar hotizontal systems” (Weiss
1985, p. 272). Although he presents, in an appendix to the
paper, the full ground water flow equation for transverse
anisotropy in the nonorthogonal, curvilinear coordinate
system, he does not present an analysis of the effect of the
transverse anisotropy on either head or flow simulation. To
isolate the effect of transverse anisotropy on flow, we pre-
sent the error associated with Darcy flow equations for dif-
ferent conditions of gradient, structural dip, and degree of
anisotropy. This paper presents corrections to the Darcy
flow equations relative to a skewed Cartesian coordinate
system (Butkov 1968) that commonly results from applying
the boundary-matching approach to standard MODFLOW
models designed for dipping beds. The nonorthogonal,
layer-centered nodes are similar to those of Weiss (1985),
but we neglect the effects related to curvature, i.e., the
effects from local changes in the dip angle and/or aquifer
thickness.

Methods

Darcy tlow equations relating vertical and bedding-
parallel flow to vertical and bedding-parallel gradient com-
ponents, using bedding-parallel and bedding-orthogonal
principal hydraulic conductivities, were derived as a func-
tion of structural dip, from known hydraulic conductivity
tensor relationships.

Hydraulic Conductivity Ellipsoid and
the Skewed Cartesian Grid

One quarter of a hydraulic conductivity ellipsoid is
shown in Figure [, with two equal principal hydraulic con-
ductivities in the plane of dipping strata (K in direction

@  True node position on cross section
@  True node position projected
O Apparent node position on map

—— Strike and dip

Figure 1. Block diagram showing rclationship between true
(stratally centered) and apparent (mapped) node positions,
strike and dip of bedding. a is direction of bedding parallel
hydraulic conductivity; b is direction of bedding perpendicu-
lar hydraulic conductivity; V is direction of vertical hydraulic
conductivity between nodes. Eight nodes are connected in a
prism in the ¢ and V directions as they would be related in
finite-difference approximations. The map or apparent posi-
tions of the eight nodes are connected in a rectangle.

0
1

a”) and an unequal principal hydraulic conductivity per-
pendicular to the plane of bedding (K| in direction “b”).
The condition shown is bedding-parallel isotropy (one prin-
cipal direction in the direction of strike equal to the other in
the direction of dip) and bedding-orthogonal anisotropy (the
principal directions in the plane of bedding unequal to the
principal direction perpendicular to bedding). The figure
also shows layer-centered nodes that parallel the bounding
hydrostratigraphy as commonly applied in MODFLOW
models using the boundary-matching approach. These
“true” nodes have “apparent” positions as they would
appear mapped in a grid coverage for the horizontal domain.
Eight neighboring true nodes, four in each stratum, are con-
nected as they would be related in finite-difference approx-
imations between them. The four nodes connected within a
stratum are connected in the principal directions within the
plane of bedding. However, the four nodes connected
between strata are connected vertically in the direction “V”
of the ellipsoid, not in the direction perpendicular to bed-
ding. The coordinate system is thus nonorthogonal with
layer-centered nodes that follow dip, similar to the curvi-
linear coordinate system of Weiss (1985), but neglecting
curvature.

Results

Figure 2 shows the skewed Cartesian coordinate sys-
tem (Butkov 1968), in a vertical plane oriented in an intern-
odal direction (Figure 1), that would result in MODFLOW
from using the boundary-matching approach to follow a
dipping bed. The coordinate system is nonorthogonal with
layer-centered nodes that follow dip, similar to the curvi-
linear coordinate system of Weiss (1985), but neglecting
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Figure 2. Skewed cartesian coordinate system (Butkov 1968)
used in MODFLOW. The vertical plane, oriented in an
internodal direction, shows / and v independent axes, corre-
sponding to the bedding-parallel and vertical directions,
respectively, and x and y independent axes, corresponding to
the bedding-parallel and bedding-orthogonal principal
hydraulic conductivities. The # and x directions are shared
while the v direction is offset from the y direction by the
apparent dip angle, 0.

curvature. The coordinate system is a skewed Cartesian
system (Butkov 1968) with / and v independent axes cor-
responding to the bedding-parallel and vertical directions,
respectively. The relationship of the coordinate system to a
standard Cartesian coordinate system, with x and y inde-
pendent axes corresponding to the bedding-parallel and
bedding-orthogonal principal hydraulic conductivities, is
also shown. The /# and x directions are shared. However,
the v direction is offset from the y direction by the apparent
dip angle, 8, corresponding to the A-axis internodal direc-
tion. For the purpose of discussion and derivation, 8 will be
referred to as the dip. However, when correcting an actual
ground water model, the apparent dip corresponding to
each specific /-axis internodal direction must be calculated
from the true dip angle, and the angle between the A-axis
internodal direction and the strike direction using the stan-
dard formulas from structural geology.

A model using the skewed Cartesian coordinate sys-
tem (Butkov 1968) but without correcting for dip intro-
duces into the flow solution two types of error related to the
dip angle: (1) it neglects the deviation of the vertical coor-
dinate axis with the bedding-orthogonal principal hydraulic
conductivity, and (2) it solves i-axis gradient and flow-vec-
tor calculations using the apparent internodal map distances
supplied by the user, as opposed to the true internodal dis-
tances within bedding planes. Correcting the first type of
error requires transformations between coordinate systems.
Correcting the second type of error requires rescaling the A-
axis-scaled flow and gradient calculations into the horizon-
tal map dimensions with projection.

The corrections to the flow equations for the skewed
grid accommodating structural dip, 6, involve (1) the trans-
formation of the arbitrary flow vector (arbitrary direction)
from the orthogonal coordinate system into the skewed
coordinate system; (2) the rescaling of the skewed h-axis

tlow vector, converting its dimensions from the /-axis dis-
tances to map distances with projection onto the horizontal;
(3) consideration of the relationship between the principal
components of flow and the gradient vector in the orthogo-
nal coordinate system; (4) the rescaling of the skewed fi-
axis component of the gradient, converting its dimensions
from the h-axis distances to map distances with projection
onto the horizontal; and (5) the transformation of the resul-
tant gradient vector out of the skewed coordinate system
into the orthogonal coordinate system.

The transformation of the arbitrary flow vector from
the orthogonal coordinate system into the skewed coordi-
nate system is given by

{ C]/,,} ~ 1 —talne { C]_\}
(= (D
dy 0 q_\'

cos 0

where the primes indicate that the flow vector, q’, is scaled
in the skewed coordinate system. The rescaling of the
skewed h-axis flow vector, converting its dimensions from
the h-axis distances to map distances with projection onto
the horizontal, yields

{q,,} _ {cose o} L tand q,‘.} o
9y 0 110 qy

cos 6

The relationship between the principal components of flow
and the gradient vector in the orthogonal coordinate system
is given by

ol

q. K, 0 dx
= ) 3)

qy 0K, i|aold

ay

The rescaling of the skewed horizontal component of the
gradient onto map coordinates, converting its dimensions
from the A-axis distances to map distances with projection
onto the horizontal, and the transformation of the resultant
gradient out of the skewed coordinate system into the
orthogonal coordinate system is given by

o an
dx 1 0 {cose 0} oh @
oH 1 0 1 oH
_— —tan —— o
ay cos 6 v

Combining Equations 2, 3, and 4 yields a relationship
between an arbitrary flow vector and the gradients in the
skewed (i.e., model) coordinate system:
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{(1,1} B {cos@ 0 } 1 —talne {K_\.O ]
9 0 1o 0K,

cos 0 |

oH
: cos 0 0} oh
~tan 0 0 1] oH )
cos 6 =
v
The matrix multiplication yields
an
{q,,} K, cos®0+ K, sin?0 — K, tan8|) oh ©
= : : 6
: K, oH
K ~K,jang 4 |1 °
: cos “8 dv

The correction for structural dip given by Equation 6 can-
not be accommodated in most ground water flow models
by input modification alone. Though the formulas on the
main diagonal as input can modity the component of the
gradicnt coincident with the solved component of the flow,

the presence of off-diagonal terms requires modification of

the solution algorithm to handle flow terms with mixed gra-
dient components, Most model codes are designed with the
assumption that coordinate axes of the model are aligned
with the principal directions and with orthogonal gradient
components (i.c., solving Equation 3). Uncorrected, these
models can solve an incorrect equation for flow using prin-
cipal conductivitics and skewed gradient components:

aoH

{q,,} B {K\- 0 } ah o
q, 0K, J|dH
v

The error introduced to ground water models by struc-
tural dip, 8, can be analyzed by comparing the two solu-
tions for v-axis and f-axis flows, subtracting Equation 6
(correct) flow solutions [rom Equation 7 (errant) flow solu-
tions, for dips ranging between 0 and 90 degrees under a
given condition of gradient (given gradient magnitude and
direction). For a gradient magnitude of 1, the gradient
directions can be conveniently expressed in the orthogonal
coordinate system, specified by an angle ¢ where bedding-
parallel gradients arc given by ¢ = 0° and ¢ = 180° and bed-
ding-orthogonal gradients arc given by ¢ = 90° and ¢ =
270° as illustrated in Figure 3. The relationship between the
orthogonal-coordinate-system gradient components and the
skewed-coordinate-system gradient components are given
by the inverse of Equation 4:

a1 a
ah _ | cos 0 { 1 0 } dx @)
o 0 1 |[sinBcos8] |oH
v ay.

Figure 3. Relationship between structural dip (6) and the
orientation of an arbitrary head gradient measured from
bedding ().

which reduces Equation 6 (the correct flows) to

oH
q K,cos =K, sin@|] dx
- - . ©)
0 K, ot
cosf dy
and reduces Equation 7 (the errant flows) to
K. ol
0 -—
{C]n} 3 cos 8 ax (10)
q, K,sinb K, cosb| |l
ay

Assuming a gradient magnitude of I and different bedding-
parallel (K ) to bedding-orthogonal (K) hydraulic conduc-
tivity ratios, Equation 9 (correct) flows were subtracted
from Equation 10 (errant) flows and expressed as a flow
crror percent by dividing by the magnitude of the correct
flow vector (Equation 9, Vg7 + g2 ). Figure 4 shows the
range of the flow errors analyzed through 360° of different
gradient directions (¢) and through 90° of dip (8).

Discussion

The plots of Figure 4 show that the flow errors, intro-
duced by not correcting the flow equations for structural
dip, are significant. For isotropic conditions as well as for
two anisotropic conditions with order-of-magnitude
changes in the K to K ratios, flow errors along the f-axis
usually reach 100% error within 50° of dip. The error range
is smaller for smaller dips, generally <20% within 10° of
dip. Flow errors along the h-axis are significant for
isotropic conditions, and become increasingly significant
with increasing K to K ratios. Flow errors along the v-axis
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Figure 4. Errors (incorrect minus correct) of the /-axis and v-axis components of flow g, and ¢, in the skewed (A, v) coordinate

system, as a percentage of the correct “magnitude” \/qi + g2 This expression represents the average size of g, and ¢,, and is
M p g T gy p ) q,

not the physical length of the flow vector (unless 6 = 0). Each panel shows the error as a function of structural dip (0) and ori-
entation of the head gradient measured from bedding (¢), with values < -100% dark shaded and >100% light shaded. The
upper panels are for the /-axis flow component, and the lower panels are for the v-axis component. The three columns are for

amounts of anisotropy between the bed-parallel (K,) and bed-orthogonal (Ky) hydraulic conductivities.

are significant for isotropic conditions, but become less sig-
nificant with increasing K to K| ratios.

Our results suggest that failure to consider the effects
of structural dip on mode! grid rescaling and rotation of the
direction of transverse anisotropy results in large errors in
model calculated flows. Weiss (1985) presents the deriva-
tion of the full ground water flow equation for transverse
anisotropy in the nonorthogonal, curvilinear coordinate
system, a coordinate system that usually results from using
the boundary-matching method in MODFLOW models.
Kladias and Ruskauff (1997) outline how to incorporate

spatially variable (heterogeneous) anisotropy within the
plane of the layer in MODFLOW. Their modification gen-
eralizes the column-to-row anisotropy factor into an array,
prescribing a unique value for each cell in the model. This
approach does not allow the orientation of the principal
axes to change spatially. The U.S. Geological Survey is
currently researching ways to incorporate generalized het-
erogeneous anisotropy within the plane of the layer in
MODFLOW, where both the anisotropic factor and orien-
tation of principal axes can change spatially (Hill 2002).
Cross-sectional models constructed within a single layer
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would thus be able to handle structural dip. However two-
or three-dimensional, multiple layered models exploiting
the boundary-matching method would still not be able to
handle structural dip until a correction for generalized het-
erogeneous anisotropy is implemented in the vertical plane.
Implementing Equation 6 corrections into MODFLOW is
not trivial, requiring a solver routine that can handle the off-
diagonal terms.

If implemented in MODFLOW or another model that
similarly uses a boundary-matched grid, the flow equation
corrections of Equation 6 will require apparent dips for
each h-axis internodal direction. Therefore, these correc-
tions will similarly require two significant variables for
each cell in the model, namely strike and dip (or dip and dip
direction) of bedding, derived from one traditional geologic
field measurement and compiled into model arrays. Gener-
ating arrays of these variables as input to ground water
and/or reservoir models will require strike and dip mea-
surements to be geographically located within the model
domain, preferably in a GIS.
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